Inhibition of potato lipoxygenase by linoleyl hydroxamic acid: kinetic and EPR spectral evidence for a two-step reaction

Author:

BUTOVICH Igor A.12,REDDY C. Channa3

Affiliation:

1. Department of Pharmaceutical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC 29425, U.S.A.

2. Center of Molecular Toxicology, The Pennsylvania State University, University Park, PA 16802, U.S.A.

3. Department of Veterinary Science, The Pennsylvania State University, University Park, PA 16802, U.S.A.

Abstract

The reaction mechanism of an electrophoretically pure potato tuber lipoxygenase (ptLOX) was studied by EPR spectroscopy. An EPR spectrum of the ‘native’ ptLOX recorded at 4.5±0.5K showed signals of a high-spin (pseudo) axial Fe3+ with a g-value of approx. 6.3±0.1 with a shoulder at g = 5.9±0.1, and a rhombic Fe3+ signal at g = 4.35±0.05. When the enzyme was treated with a 2-fold molar excess of 13(S)-hydroperoxyoctadecadienoic acid [13(S)-HPODE], a 3-fold increase in the integral intensity of the g = 6.3 signal was observed, indicating that 25% of the native ptLOX iron was in ferrous state. The positional isomer 9(S)-HPODE caused similar spectral changes. Therefore the catalytic centre of ptLOX appears to accommodate both positional isomers of linoleic acid hydroperoxides in a manner that ensures proper alignment of their hydroperoxy groups with the iron centre of the enzyme. Treatment of the Fe3+-ptLOX form with a 3-fold molar excess of linoleyl hydroxamic acid (LHA) completely quenched the g = 6.3 signal. Concurrently, a dramatic increase in the signal at g = 4.35 was detected, which was attributed to a newly formed LHA—Fe3+-ptLOX complex. The spectral characteristics of the complex are similar to those of a 4-nitrocatechol—Fe3+-ptLOX complex. From these observations, we conclude that LHA did not reduce Fe3+ to Fe2+, but rather formed a LHA—Fe3+-ptLOX complex. Formation of such a complex may be responsible for the inhibitory activity of LHA, at least in the initial stages of enzyme inhibition. A prolonged 15min incubation of the complex at 23±1°C led to the partial quenching of the g = 4.35 signal. The quenching is attributed to the reduction of Fe3+-ptLOX by LHA, with concomitant formation of its oxidation product(s). A kinetic scheme for the inhibition is proposed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3