Binding of C-reactive protein to modified low-density-lipoprotein particles: identification of cholesterol as a novel ligand for C-reactive protein

Author:

TASKINEN Sanna1,KOVANEN Petri T.1,JARVA Hanna2,MERI Seppo2,PENTIKÄINEN Markku O.1

Affiliation:

1. Wihuri Research Institute, Kalliolinnantie 4, FIN-00140 Helsinki, Finland,

2. Department of Bacteriology and Immunology, P. O. Box 21, University of Helsinki, Helsinki FIN-00014, Finland

Abstract

C-reactive protein (CRP), an acute-phase reactant, is present in atherosclerotic human arterial intima in association with lipids. In the present work we studied interactions between CRP and LDL on microtitre wells, where either CRP or LDL was immobilized. LDL was modified by vortex-mixing, oxidation, or by lipolysis with phospholipase A2 or with sphingomyelinase or a combination of trypsin and cholesterol esterase. We found that CRP bound only to LDL modified by trypsin/cholesterol esterase or by sphingomyelinase and that this binding was Ca2+-dependent. In these two forms of modified LDL, non-esterified cholesterol was susceptible to cholesterol oxidase, indicating exposure of non-esterified cholesterol on particle surfaces and suggesting a role for non-esterified cholesterol in mediating CRP binding. Consistent with this hypothesis were the following findings: (i) increasing the amount of non-esterified cholesterol in LDL with cyclodextrin increased, and decreasing its amount decreased, the binding of CRP to LDL; (ii) modification of non-esterified cholesterol in LDL by cholesterol oxidase decreased the binding of CRP to LDL; and (iii) CRP bound to purified non-esterified cholesterol. The binding was Ca2+-dependent and could be competed out with phosphocholine. Taken together, these findings suggest that CRP can bind to modified lipoproteins, notably to the non-esterified cholesterol on their surface. These interactions may be related to the suggested role of CRP in the local inflammation present in atherosclerotic plaques.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3