Identification of a novel AU-rich-element-binding protein which is related to AUF1

Author:

DEAN Jonathan L.E.1,SULLY Gareth1,WAIT Robin1,RAWLINSON Lesley1,CLARK Andrew R.1,SAKLATVALA Jeremy1

Affiliation:

1. Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology and Medicine, 1 Aspenlea Rd, Hammersmith, London W6 8LH, U.K.

Abstract

The AU-rich element (ARE) is an important instability determinant for a large number of early-response-gene mRNAs. AREs also mediate the stabilization of certain pro-inflammatory mRNAs, such as tumour necrosis factor (TNF)-α and cyclo-oxygenase-2 (COX-2), in response to inflammatory stimuli. To understand how AREs control mRNA stability, it is necessary to identify trans-acting factors. We have purified a new ARE-binding protein and identified it as CArG box-binding factor-A (CBF-A). The amino acid sequence of CBF-A is highly similar to that of the ARE-binding protein AUF1. Recombinant CBF-A bound the COX-2 and TNF-α AREs, but not a non-specific control RNA. In contrast, in an electrophoretic-mobility-shift assay (EMSA) of crude RAW 264.7 macrophage-like cell extracts, an antiserum that recognizes both AUF1 and CBF-A failed to supershift complexes formed on the TNF-α ARE, but did supershift a complex specific for the COX-2 ARE. CBF-A exists as two isoforms, p37 and p42, that differ by a 47-amino-acid insertion close to the C-terminus. By expressing epitope-tagged isoforms of CBF-A it was shown that the p42 isoform binds the COX-2 ARE in EMSA of crude cell extracts. In a HeLa-cell tetracycline-regulated reporter system, overexpression of the p42 CBF-A isoform resulted in stabilization of a COX-2 ARE reporter mRNA. Epitope-tagged p42 CBF-A expressed in HeLa cells co-immunoprecipitated with endogenous COX-2 mRNA, but not glyceraldehyde-3-phosphate dehydrogenase mRNA, as shown by reverse-transcription PCR. The similarity between CBF-A and AUF1 suggests that CBF-A could be re-named AUF2.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3