Restoring synaptic vesicles during compensatory endocytosis

Author:

Gauthier-Kemper Anne1,Kahms Martin1,Klingauf Jürgen1

Affiliation:

1. Department of Cellular Biophysics, Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Strasse 31, 48149 Münster, Germany

Abstract

In the CNS (central nervous system), nerve cells communicate by transmitting signals from one to the next across chemical synapses. Electrical signals trigger controlled secretion of neurotransmitter by exocytosis of SV (synaptic vesicles) at the presynaptic site. Neurotransmitters diffuse across the synaptic cleft, activate receptor channels in the receiving neuron at the postsynaptic site, and thereby elicit a new electrical signal. Repetitive stimulation should result in fast depletion of fusion-competent SVs, given their limited number in the presynaptic bouton. Therefore, to support repeated rounds of release, a fast trafficking cycle is required that couples exocytosis and compensatory endocytosis. During this exo-endocytic cycle, a defined stoichiometry of SV proteins has to be preserved, that is, membrane proteins have to be sorted precisely. However, how this sorting is accomplished on a molecular level is poorly understood. In the present chapter we review recent findings regarding the molecular composition of SVs and the mechanisms that sort SV proteins during compensatory endocytosis. We identify self-assembly of SV components and individual cargo recognition by sorting adaptors as major mechanisms for maintenance of the SV protein complement.

Publisher

Portland Press Ltd.

Subject

Molecular Biology,Biochemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neuropharmacology and neurotherapeutics;Biochemical and Molecular Pharmacology in Drug Discovery;2024

2. The readily retrievable pool of synaptic vesicles;Biological Chemistry;2023-03-06

3. The Decade of Super-Resolution Microscopy of the Presynapse;Frontiers in Synaptic Neuroscience;2020-08-11

4. The HERC1 ubiquitin ligase regulates presynaptic membrane dynamics of central synapses;Scientific Reports;2020-07-21

5. Safeguards of Neurotransmission: Endocytic Adaptors as Regulators of Synaptic Vesicle Composition and Function;Frontiers in Cellular Neuroscience;2017-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3