Regional differences in ribonuclease content of rat and mouse kidney

Author:

Liu Dai Kee1,Matrisian Paul E.1

Affiliation:

1. Department of Pharmacology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, PA 17033, U.S.A.

Abstract

Kidney cortex, red medulla and white medulla were separated into nuclei, mitochondria, microsomal and 105000g supernatant fractions. Assay of RNAase (ribonuclease) activity at pH7.8 revealed that, for each subcellular fraction, activity was much greater in cortex than in red or white medulla; this was true for both free RNAase and total (free plus latent) RNAase. For example, the free RNAase activity in the 105000g supernatant of cortex was 5 and 8 times higher than in red and white medulla respectively. No latent RNAase activity was found in any particulate fraction. Latent supernatant RNAase activities (suggesting presence of bound RNAase inhibitor) were similar in cortex and medulla. The cortex supernatant contained minimal free RNAase inhibitor, whereas that of the red and white medulla showed about one-third and one-tenth respectively of the inhibitor activity measured in liver. Adrenalectomy did not change RNAase activity in any fraction nor the content of free RNAase inhibitor in the kidney supernatant, but did decrease the liver RNAase inhibitor content by 40%. In supernatants from mouse kidney, both free and total RNAase activities of both cortex and red medulla were similar to those of rat red medulla. Mouse cortex contained appreciably higher amounts of free RNAase inhibitor than rat cortex. The difference between the rat and mouse cortical RNAase activity and inhibitor content may help explain the relative ease with which satisfactory renal polyribosome profiles were obtained from mouse kidneys. Our results, as well as those of Kline & Liberti [(1973) Biochem. Biophys. Res. Commun.52, 1271–1277], showing that renal red and white medulla are more active than cortex in protein synthesis, are consistent with the hypothesis that the RNAase–RNAase-inhibitor system may participate in the regulation of protein synthesis.

Publisher

Portland Press Ltd.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Structure and Action of Mammalian Ribonuclease (Angiogenin) Inhibitor;Progress in Nucleic Acid Research and Molecular Biology;1993

2. Alkaline ribonuclease from the insect Ceratitis capitata;Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression;1985-11

3. Induction of Kidney Metallothionein and Metallothionein Messenger RNA by Zinc and Cadmium;The Journal of Nutrition;1982-04-01

4. Species differences in ribonuclease activity of milk and mammary gland;Comparative Biochemistry and Physiology Part B: Comparative Biochemistry;1982-01

5. Coordinate induction of several mRNA species in rat kidney during glucocorticoid treatment.;Journal of Biological Chemistry;1981-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3