Polypyrroles formed from porphobilinogen and amines by uroporphyrinogen synthetase of Rhodopseudomonas spheroides

Author:

Davies Richard C.1,Neuberger Albert1

Affiliation:

1. Department of Chemical Pathology, St. Mary's Hospital Medical School, London W.2, U.K.

Abstract

1. Uroporphyrinogen I synthetase of Rhodopseudomonas spheroides was purified more than 200-fold from the soluble protein of broken bacterial cells. The enzyme had molecular weight 36000, an isoelectric point of 4.46 and migrated as a single active protein band on disc-gel electrophoresis at pH7.5 and 8.9. 2. The enzyme consumed porphobilinogen and formed uroporphyrinogen at pH8.2 without the accumulation of intermediates. In the presence of hydroxylamine, ammonia or methoxyamine the production of porphyrinogen was inhibited and the enzyme formed open-chain polypyrroles instead. 3. These polypyrroles behaved like uroporphyrinogen on Sephadex G-25; they were colourless and had unsubstituted α-pyrrolic positions. The inhibitory amines were incorporated into the molecules. 4. The polypyrroles formed porphyrins non-enzymically and the cyclization reaction was accompanied by the release of the inhibitory amine. Exchange of the amino function of the original porphobilinogen in the polypyrrole was complete with hydroxylamine and almost complete with methoxyamine, both ammonia and methoxyamine being present in the polypyrrolic material. 5. The behaviour, properties and composition of the radioactive hydroxylamine derivative were consistent with a tetrapyrrolic structure, probably a pyrrylmethane, that was not cyclized, rather than with di-, tri- or penta-pyrrolic structures. No monopyrrolic or dipyrrolic Ehrlich-positive material was released on cyclization. The ammonia and methoxyamine derivatives had properties similar to the hydroxylamine derivative. 6. Another modified pyrrole was detected only in experiments with hydroxylamine. It differed from both porphobilinogen and known dipyrroles and appeared to be a monopyrrole. 7. The participation of positively charged reaction centres in the enzymic mechanism, particularly in the cyclization step, is discussed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3