Importance of the glutamate residue of KDEL in increasing the cytotoxicity of Pseudomonas exotoxin derivatives and for increased binding to the KDEL receptor

Author:

Kreitman R J1,Pastan I1

Affiliation:

1. Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, U.S.A.

Abstract

It was previously shown that amino acids 609-613 (REDLK) at the C-terminus of Pseudomonas exotoxin (PE) are necessary for cytotoxicity, presumably by directing the toxin to the endoplasmic reticulum (ER) [Chaudhary, Jinno, FitzGerald and Pastan (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 308-312]. Using the anti-[interleukin 2 receptor (IL2R)] immunotoxin anti-Tac(Fv)-PE38 (AT-PE38REDLK), it was found that removing the terminal lysine did not alter the activity, but replacing REDL with KDEL, the most common ER retention sequence, increased activity. To determine which amino acid in KDEL was responsible for the increase in activity, we tested eight C-terminal mutants of AT-PE38REDLK. Using IL2R-bearing MT-1 cells, we found that the glutamate residue of KDEL was required for high activity, as the cytotoxicity of AT-PE38 ending in KDEL, RDEL, KEEL or REEL was much greater than that of AT-PE38 ending in REDL, KEDL, RDDL or KDDL. Using freshly isolated lymphocytic leukaemia cells, AT-PE38 ending in KDEL, REEL or RDEL was more than 100-fold more cytotoxic than AT-PE38 ending in KEDL, REDL, RDDL or the native sequence REDLK. The RDEL sequence also improved the cytotoxic activity of an interleukin 4-PE38 toxin fusion protein. Improved cytotoxic activity correlated with improved binding of the C-termini to the KDEL receptor on rat Golgi membranes. These data indicate that the glutamate residue of KDEL improves the cytotoxicity of PE by increasing binding to a sorting receptor which transports the toxin from the transreticular Golgi apparatus to the ER, where it is translocated to the cytosol and inhibits protein synthesis.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3