Interactions of proteins with heparan sulfate

Author:

Alotaibi Faizah S.1,Alsadun Marim M.R.12,Alsaiari Sarah A.13,Ramakrishnan Krithika1,Yates Edwin A.1ORCID,Fernig David G.1ORCID

Affiliation:

1. 1Department of Biochemistry, Systems and Cell Biology, Institute of Molecular, Integrative and Systems Biology, University of Liverpool, Liverpool L69 7ZB, U.K.

2. 2Department of Biology, University of Tabuk, Tabuk 71491, Saudi Arabia

3. 3Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia

Abstract

Abstract Heparan sulfate (HS) is a glycosaminoglycan, polysaccharides that are considered to have arisen in the last common unicellular ancestor of multicellular animals. In this light, the large interactome of HS and its myriad functions in relation to the regulation of cell communication are not surprising. The binding of proteins to HS determines their localisation and diffusion, essential for embryonic development and homeostasis. Following the biosynthesis of the initial heparosan polymer, the subsequent modifications comprise an established canonical pathway and a minor pathway. The more frequent former starts with N-deacetylation and N-sulfation of GlcNAc residues, the latter with C-5 epimerisation of a GlcA residue adjacent to a GlcNAc. The binding of proteins to HS is driven by ionic interactions. The multivalent effect arising from the many individual ionic bonds between a single protein and a polysaccharide chain results in a far stronger interaction than would be expected from an ion-exchange process. In many instances, upon binding, both parties undergo substantial conformational change, the resulting hydrogen and van der Waal bonds contributing significant free energy to the binding reaction. Nevertheless, ionic bonds dominate the protein–polysaccharide interaction kinetically. Together with the multivalent effect, this provides an explanation for the observed trapping of HS-binding proteins in extracellular matrix. Importantly, individual ionic bonds have been observed to be dynamic; breaking and reforming, while the protein remains bound to the polysaccharide. These considerations lead to a model for 1D diffusion of proteins in extracellular matrix on HS, involving mechanisms such as sliding, chain switching and rolling.

Funder

Royal Embassy of Saudi Arabia Cultural Bureau

European Commission

North West Cancer Research

Biotechnology and Biological Sciences Research Council

University of Jeddah

University of Tabuk

Publisher

Portland Press Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3