Effects of HIF-1α on renal fibrosis in cisplatin-induced chronic kidney disease

Author:

Zhao Hao1,Han Yachun1,Jiang Na1,Li Chenrui1,Yang Ming1,Xiao Ying1,Wei Ling1,Xiong Xiaofen1,Yang Jinfei1,Tang Chengyuan1,Xiao Li1ORCID,Liu Fuyou1,Liu Yu1,Sun Lin1ORCID

Affiliation:

1. Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Hunan, China

Abstract

Abstract Cisplatin (Cis) can cause chronic kidney disease (CKD) and promote renal fibrosis, but the underlying mechanism is not fully understood. Hypoxia inducible factor-1α (HIF-1α) can promote renal fibrosis in some kidney diseases, but its role in Cis-induced CKD is still unknown. Notch-1 is a recognized molecule that promotes renal fibrosis under pathological circumstances, and evidence shows that HIF-1α and Notch-1 are closely related to each other. In the present study, mice with HIF-1α gene knockout in proximal tubular cells (PTCs) (PT-HIF-1α-KO) were generated and treated with Cis to induce CKD. A human proximal tubular cell line (HK-2) and primary mouse PTCs were used for in vitro studies. The results showed that HIF-1α was increased in the kidneys of Cis-treated wild-type mice, accompanied by elevated Notch-1, Notch-1 intracellular domain (N1ICD), Hes-1 and renal fibrosis. However, these alterations were partially reversed in PT-HIF-1α-KO mice. Similar results were observed in HK-2 cells and primary mouse PTCs. In addition, treating the cells with Cis induced a marked interaction of HIF-1α and N1ICD. Further inhibiting Notch-1 significantly reduced cellular fibrogenesis but did not affect HIF-1α expression. The data suggested that HIF-1α could promote renal fibrosis in Cis-induced CKD by activating Notch-1 both transcriptionally and post-transcriptionally and that HIF-1α may serve as a potential therapeutic target for Cis-induced CKD.

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3