Actin polymerization in neutrophils is triggered without a requirement for a rise in cytoplasmic Ca2+

Author:

al-Mohanna F A1,Hallett M B1

Affiliation:

1. Department of Surgery, University of Wales College of Medicine, Heath Park, Cardiff CF4 4XN, U.K.

Abstract

Stimulation of rat neutrophils with the peptide fMetLeuPhe caused (i) the appearance of a 40 kDa protein in the Triton-X-100-insoluble cytoskeleton, (ii) the disappearance of DNAase inhibition from the cytosol and (iii) the appearance of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)phallacidin (NBD-phallacidin) binding sites. All three observations were consistent with a rapid and transient assembly of polymerized actin, peaking at approximately 5 s and returning to near resting levels within 40 s. By experimentally depleting the cells of Ca2+ and increasing the cytoplasmic Ca2+ buffering capacity, the peptide-induced Ca2+ transient was reduced from a peak of 900 nM to 250 nM, without inhibiting actin polymerization, and this peak was sustained for at least 2 min. A further dissociation between the triggering of actin polymerization and peptide-induced Ca2+ elevation and oxidase activation was demonstrated at low concentrations of peptide (1-100 pM), actin polymerization being triggered without an elevation in Ca2+ or activation of the oxidase. Two other agents which induced actin polymerization, phorbol 12-myristate 13-acetate and latex beads, failed to elevate cytoplasmic Ca2+. It was therefore concluded that neither Ca2+ nor those intracellular messengers which act with Ca2+ to trigger the neutrophil oxidase are responsible for triggering actin polymerization in neutrophils.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3