Comparison of growth characteristics of in vitro cultured granulosa cells from geese follicles at different developmental stages

Author:

Deng Yan.1,Gan Xiang.1,Chen Da.1,Huang Hulian.1,Yuan Junsong.1,Qiu Jiamin.1,Hu Shenqiang.1,Hu Jiwei.1,Wang Jiwen.1

Affiliation:

1. Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China

Abstract

Granulosa cells (GCs) are essential components of follicles and are involved in regulating the process of follicles development. However, comparative studies on GCs isolated from different staged follicles have not been conducted in goose. The aim of the present study was to identify the growth characteristics of goose GCs from pre-hierarchical (6–10 mm) and hierarchical (F4–F2, F1) follicles. Our results showed that the three cohorts of cells had different tolerance to collagenase and had noticeable morphological differences. The F1 granulosa layers were fully digested by 0.1% collagenase, while higher concentration (0.3%) was used for both F4–F2 and pre-hierarchical granulosa layers. In the state of suspension, the diameter of F1 individual cell was larger than the other two cohorts. However, after adhering to the culture plate, cells of F1 just had changes in the diameter accompanied by small bright spots, while both pre-hierarchical and F4–F2 GCs proliferated rapidly with spreading and irregularly shaped voids. Furthermore, all attached cells could be stained by the follicle-stimulating hormone receptor antibody. Analyses of both growth curve and the mRNA expression profiles of genes related to cellular proliferation, apoptosis, and steroidogenesis suggested that three cohorts of in vitro cultured GCs had different physiological viability and functions. Taken together, the present study not only revealed differences of the growth characteristics among three cohorts of goose GCs from pre-hierarchical, F4–F2 and F1 follicles, but also optimized the in vitro culture system of geese different staged GCs.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3