The action of the protein kinase C inhibitor, staurosporine, on human platelets. Evidence against a regulatory role for protein kinase C in the formation of inositol trisphosphate by thrombin

Author:

Watson S P1,McNally J1,Shipman L J1,Godfrey P P2

Affiliation:

1. University Department of Pharmacology, South Parks Road, Oxford OX1 3QT, U.K.

2. Department of Clinical Pharmacology, Radcliffe Infirmary, Woodstock Road, Oxford OX2 6HE, U.K.

Abstract

The ability of several putative inhibitors of protein kinase C (PKC) to block dioctanoylglycerol (DC8)-induced phosphorylation of a 47 kDa protein (a recognized substrate for PKC) in human platelets was investigated. Staurosporine (1 microM) caused complete inhibition of phosphorylation, whereas the other reagents were either inactive (polymyxin B) or gave only partial inhibition (C-1, H-7, tamoxifen). Staurosporine (1 microM) fully inhibited the phosphorylation of the 47 kDa protein in platelets challenged with thrombin, but also inhibited the phosphorylation of a 20 kDa protein which is a substrate for myosin light-chain kinase. The inhibition of both kinases by staurosporine was associated with the inhibition of thrombin-induced secretion of ATP and 5-hydroxytryptamine and a slowing of the aggregation response; staurosporine, however, had no effect on the formation of phosphatidic acid and inositol phosphates induced by thrombin. Staurosporine also reversed the inhibitory action of phorbol esters on thrombin-induced formation of phosphatidic acid. These data are consistent with a role for these two kinases in secretion and aggregation (although there must be additional control signals, since aggregation was only slowed, not inhibited), but suggest that neither kinase is involved in the regulation of phosphoinositide metabolism. This latter conclusion contradicts previous observations that the activation of PKC by phorbol esters or membrane-permeable diacylglycerols alters the apparent activity of both phospholipase C and inositol trisphosphatase. Possible explanations for this discrepancy are discussed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3