Transmembrane signalling mechanisms regulating expression of cationic amino acid transporters and inducible nitric oxide synthase in rat vascular smooth muscle cells

Author:

BAYDOUN Anwar R.1,WILEMAN Samantha M.2,WHEELER-JONES Caroline P. D.3,MARBER Michael S.4,MANN Giovanni E.2,PEARSON Jeremy D.2,CLOSS Ellen I.5

Affiliation:

1. University of Hertfordshire, Department of Biosciences, Faculty of Natural Sciences, Hatfield Campus, College Lane, Hatfield, Herts. AL10 9AB, U.K.

2. Centre for Cardiovascular Biology and Medicine, GKT School of Biomedical Sciences, King's College, Campden Hill Road, London W8 7AH, U.K.

3. Department of Veterinary Basic Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, U.K.

4. Department of Cardiology, King's College, St Thomas' Hospital, London, SE1 7EH, U.K.

5. Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Strasse 67, 55101 Mainz, Germany

Abstract

The signalling mechanisms involved in the induction of nitric oxide synthase and L-arginine transport were investigated in bacterial lipopolysaccharide (LPS)- and interferon-γ (IFN-γ)-stimulated rat cultured aortic smooth muscle cells (RASMCs). The expression profile of transcripts for cationic amino acid transporters (CATs) and their regulation by LPS and IFN-γ were also examined. Control RASMCs expressed mRNA for CAT-1, CAT-2A and CAT-2B. Levels of all three transcripts were significantly elevated in activated cells. Stimulated CAT mRNA expression and L-arginine transport occurred independently of protein kinase C (PKC), protein tyrosine kinase (PTK) and p44/42 mitogen-activated kinases (MAPKs), but were inhibited by the p38 MAPK inhibitor SB203580, which at 3 μM caused maximum inhibition of both responses. Induction of NO synthesis was independent of p44/42 MAPK activation and only marginally dependent on PKC, but was attenuated markedly by the PTK inhibitors genistein and herbimycin A. SB203580 differentially regulated inducible NO synthase expression and NO production, potentiating both processes at low micromolar concentrations and inhibiting at concentrations of ⩾ 1 μM. In conclusion, our results suggest that RASMCs constitutively express transcripts for CAT-1, CAT-2A and CAT-2B, and that expression of these transcripts is significantly enhanced by LPS and IFN-γ. Moreover, stimulation of L-arginine transport and induction of NO synthesis by LPS and IFN-γ appear to be under critical regulation by the p38 MAPK, since both processes were significantly modified by SB203580 at concentrations so far shown to have no effect on other signalling pathways. Thus, in RASMCs, the p38 MAPK cascade represents an important signalling mechanism, regulating both enhanced L-arginine transport and induced NO synthesis.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3