Affiliation:
1. Laboratoire de Physique, Faculté de Pharmacie, Université Louis Pasteur, Strasbourg, France
Abstract
Conformational changes in the beta-subunit of the bovine brain Ca2+-binding protein S100b (S100-beta) accompanying Ca2+ binding were investigated by analysis of the spectroscopic properties of the single tyrosine residue (Tyr17 beta) and flow-dialysis binding experiments. S100-beta binds Ca2+ sequentially at two sites to change the conformation of the protein. The first Ca2+ ion binds to site II beta, a typical Ca2+-binding site in the C-terminal region, and it does not significantly perturb the proximal environment of Tyr17 beta. After the first site is occupied, another Ca2+ ion binds to the N-terminal Ca2+-binding site, I beta, and strengthens a hydrogen bond between Tyr17 beta and a neighbouring carboxylate acceptor group, which results in a large increase in the Tyr17 beta fluorescence spectrum half-width and a positive absorption and c.d. signal between 290 and 275 nm. Ca2+ binding to the S100b.Zn2+6 complex, studied by flow-dialysis and fluorescence measurements showed that, although Zn2+ ions increase the affinity of S100b protein for Ca2+, the Ca2+-binding sequence was not changed. Tb3+ (terbium ion) binding studies on the S100b.Zn2+6 complex proved that Tb3+ antagonizes only Ca2+ binding site II beta and confirmed the sequential occupation of Ca2+-binding sites on the S100b.Zn2+6 complex.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献