The differential scattering of circularly polarized light by chloroplasts and evaluation of their true circular dichroism

Author:

Gregory Richard P. F.1,Raps Shirley2

Affiliation:

1. Department of Biological Chemistry, University of Manchester, Manchester M13 9PL, U.K.

2. Department of Biological Sciences, Hunter College of the City University of New York, N.Y. 10021, U.S.A.

Abstract

Chloroplasts isolated from pea leaves display an intense circular dichroism in the range 600 to 720nm. Circularly polarized light is also differentially scattered by chloroplasts, and this effect can be confused with circular dichroism. By using an instrumental modification it was possible to distinguish, and record separately, the ellipticities of the transmitted light (circular dichroism) and of the scattered light in the same c.d. instrument. By means of a light-scattering apparatus, the intensity of unpolarized light scattered by chloroplasts was measured as a function of wavelength and of angle. This measurement allowed the aforementioned ellipticities to be corrected for mutual interference. At a concentration of 4μg of chlorophyll/ml (the optimum practical concentration of chloroplasts at which there was no significant interaction of scattering and absorption effects) spectra of true circular dichroism (circular differential absorption) and circular differential scattering were obtained. The former showed maxima, positive at 688nm and negative at 676nm, with an intensity Δθ′8.3m°·litre·(mg of chlorophyll)-1·cm-1. The latter had a maximum at 683nm with an intensity of +47m° with respect to the solvent baseline; this value is independent of the concentration of chloroplasts in dilute suspensions. It is suggested that the intense circular dichroism of chloroplasts reflects specific chlorophyll–chlorophyll interactions in the light-harvesting pigment. The advantages of this method for determining the c.d. of scattering suspensions over those of other investigators are discussed.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3