Comparative study of nuclear binding sites for oestradiol in rat testicular and uterine tissue. Determination of low amounts of specific binding sites by an [3H] oestradiol-exchange method

Author:

de Boer W,de Vries J,Mulder E,van der Molen H J

Abstract

1. An [3H]oestradiol-exchange method was developed for the determination of oestradiol-receptor complexes in the nuclear fraction of immature rat testicular tissue. This method permits the determination of nuclear oestradiol-receptor sites in the presence of a relatively large amount of non-specific oestradiol binding present in testicular nuclei. After incubation of nuclei for 60min at 20 degrees C in the presence of [3H]oestradiol with or without a 1000-fold excess of non-radioactive diethylstilboestrol, specific binding can be determined quantitatively in the KCl-extractabe fraction, which contains 40% of the total receptor population. 2. The amount of receptor-bound steroid present in the 0.4m-KCl extract of testicular neclei remained constant during incubation at 20 degrees C. For uterine nuclei incubated with [3H]oestradiol at 37 degrees C a shift of specifically bound [3H]oestradiol occurred from the KCl-soluble fraction to the KCl-insoluble fraction. 3. In intact rat testis, about 20% of the total receptor concentration was present in its nuclear form. Hypophysectomy 5 days before measurement resulted in a twofold decrease in the amount of receptor, which was present mainly in the cytosol. After injection of choriogonadotropin to intact animals, the total receptor concentration increased threefold. 4. This nuclear exchange method might be useful for determination of occupied specific receptor sites in tissues with relatively low contents of specific receptors.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3