Purification and characterization of the imidazoleglycerol-phosphate dehydratase of Saccharomyces cerevisiae from recombinant Escherichia coli

Author:

Hawkes T R1,Thomas P G1,Edwards L S1,Rayner S J2,Wilkinson K W3,Rice D W3

Affiliation:

1. Department of Exploratory Plant Sciences, Zeneca Agrochemicals, Jealou's Hill Research Station, Bracknell, Berkshire RG12 6EY U.K.

2. Infection Department, Zeneca Pharmaceuticals, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG U.K.

3. The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, P.O. Box 594, Sheffield S10 2UH, U.K.

Abstract

The HIS3+ gene of Saccharomyces cerevisiae was overexpressed in Escherichia coli and the recombinant imidazoleglycerol-phosphate dehydratase (IGPD) purified to homogeneity. Laser-desorption and electrospray m.s. indicated a molecular ion within 2 units of that expected (23833.3) on the basis of the protein sequence, with about half of the polypeptide lacking the N-terminal formylmethionine residue. IGPD initially purified as an apoprotein was catalytically inactive and mainly a trimer of M(r) 70,000. Addition of Mn2+ (but not Mg2+) caused this to assemble to an active (40 units/mg) enzyme (Mn-IGPD) comprising of 24 subunits (M(r) 573,000) and containing 1.35 +/- 0.1 Mn atoms/polypeptide subunit. An enzyme with an identical activity and metal content was also obtained when the fermenter growth medium of recombinant Escherichia coli was supplemented with MnCl2, and IGPD was purified through as Mn-IGPD rather than as the apoenzyme and assembled in vitro. Inhibition by EDTA indicated that the intrinsic Mn2+ was essential for activity. The retention of activity over time after dilution to very low concentrations of enzyme (< 20 nM) indicated that the metal remained in tight association with the protein. A novel continuous assay method was developed to facilitate the kinetic characterization of Mn-IGPD. At pH 7.0, the Km for IGP was 0.10 +/- 0.02 mM and the Ki value for inhibition by 1,2,4-triazole, 0.12 +/- 0.02 mM. In contrast with other reports, thiols had no influence on catalytic activity. The activity of Mn-IGPD varied with enzyme concentration in such a way as to suggest that it dissociates to a less active form at very low concentrations. Significant inhibition by the product, imidazole acetol phosphate, was inferred from the shape of the progress curve. Titration with, the potent competitive inhibitor, 2-hydroxy-3-(1,2,4-triazol-1-yl)propyl phosphonate indicated that Mn-IGPD contained 0.9 +/- 0.1 catalytic sites/protomer. The activity nearly doubled in the presence of high concentrations of Mn2+; the apparent Ks for stimulation was 20 microM. The basis of this effect was obscure, since there was no corresponding increase in the titre of active sites. Neither was there a discernable shift in the values of Km or Ki (above), although exogenous Mn2+ did reduce the optimum pH for kcat, from 7.2 to 6.8. On the basis of a single site/subunit, the maximum rate of catalytic turnover at 30 degrees C was 32 s-1.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3