Mutation of Trp29 of human equilibrative nucleoside transporter 1 alters affinity for coronary vasodilator drugs and nucleoside selectivity

Author:

Paproski Robert J.12,Visser Frank12,Zhang Jing12,Tackaberry Tracey12,Damaraju Vijaya12,Baldwin Stephen A.3,Young James D.14,Cass Carol E.12

Affiliation:

1. Membrane Protein Research Group, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7

2. Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada, T6G 1Z2

3. Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, U.K.

4. Department of Physiology, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7

Abstract

hENT1 (human equilibrative nucleoside transporter 1) is inhibited by nanomolar concentrations of various structurally distinct coronary vasodilator drugs, including dipyridamole, dilazep, draflazine, soluflazine and NBMPR (nitrobenzylmercaptopurine ribonucleoside). When a library of randomly mutated hENT1 cDNAs was screened using a yeast-based functional complementation assay for resistance to dilazep, a clone containing the W29G mutation was identified. Multiple sequence alignments revealed that this residue was highly conserved. Mutations at Trp29 were generated and tested for adenosine transport activity and inhibitor sensitivity. Trp29 mutations significantly reduced the apparent Vmax and/or increased the apparent Km values for adenosine transport. Trp29 mutations increased the IC50 values for hENT1 inhibition by dipyridamole, dilazep, NBMPR, soluflazine and draflazine. NBMPR and soluflazine displayed remarkably similar trends, with large aromatic substitutions at residue 29 resulting in the lowest IC50 values, suggesting that both drugs could interact via ring-stacking interactions with Trp29. The W29T mutant displayed a selective loss of pyrimidine nucleoside transport activity, which contrasts with the previously identified L442I mutant that displayed a selective loss of purine nucleoside transport. W29T, L442I and the double mutant W29T/L442I were characterized kinetically for nucleoside transport activity. A helical wheel projection of TM (transmembrane segment) 1 suggests that Trp29 is positioned close to Met33, implicated previously in nucleoside and inhibitor recognition, and that both residues line the permeant translocation pathway. The data also suggest that Trp29 forms part of, or lies close to, the binding sites for dipyridamole, dilazep, NBMPR, soluflazine and draflazine.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3