Membrane-mediated control of hepatic β-hydroxy-β-methylglutaryl-coenzyme A reductase

Author:

Sipat A B,Sabine J R

Abstract

Previously we [Sabine & James (1976) Life Sci. 18, 1185–1192] proposed that ‘the activity of hepatic beta-hydroxy-beta-methylglutaryl-coenzyme A reductase is critically regulated by the fluidity of its supporting microsomal membrane’. In the present work we examined further this concept of membrane-mediated control, with respect to the specific hypothesis that such control might function as a common mechanism both for the co-ordinated regulation of other enzymes affected by cholesterol feeding and also for the subcellular integration of the several physiological factors known to influence this enzyme's activity. Contrary to earlier expectations, this hypothesis now appears not to hold. We report here that, under those conditions of short-term cholesterol feeding that affected the reductase, a variety of other microsomal enzymes did not display membrane-function interactions, i.e. neither enzymes involved in cholesterol metabolism and also affected by cholesterol feeding (cholesterol 7 alpha-hydroxylase), nor those involved in cholesterol metabolism and not affected by cholesterol feeding (hydroxymethylglutaryl-CoA hydrolase, acyl-CoA:cholesterol acyltransferase), nor those not directly involved in cholesterol metabolism at all (glucose 6-phosphatase). Furthermore, we observed no evidence for the operation of membrane-mediated control of the reductase in other situations known to influence its activity, i.e. starvation, diurnal rhythm, the very early stages of cholesterol feeding and various manipulations in vitro.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phytoalexins: Enzymology and Molecular Biology;Advances in Enzymology - and Related Areas of Molecular Biology;2006-11-22

2. Iron-ascorbate alters the efficiency of Caco-2 cells to assemble and secrete lipoproteins;American Journal of Physiology-Gastrointestinal and Liver Physiology;2000-07-01

3. Impact of essential fatty acid deficiency on hepatic sterol metabolism in rats;HEPATOLOGY;1996

4. The calf thymus superoxide dismutase: a protein active on cholesterol metabolism;Comparative Biochemistry and Physiology Part B: Comparative Biochemistry;1993-07

5. Perinatal development of hepatic cholesterol synthesis in the rat;Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism;1991-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3