Effects of peptide C corresponding to the Glu724–Pro760 region of the II–III loop of the DHP (dihydropyridine) receptor α1 subunit on the domain- switch-mediated activation of RyR1 (ryanodine receptor 1) Ca2+ channels

Author:

Bannister Mark L.1,Ikemoto Noriaki12

Affiliation:

1. Boston Biomedical Research Institute, Watertown, MA 02472, U.S.A.

2. Department of Neurology, Harvard Medical School, Boston, MA 02115, U.S.A.

Abstract

The Leu720–Leu764 region of the II–III loop of the dihydropyridine receptor is believed to be important for both orthograde and retrograde communications with the RyR (ryanodine receptor), but its actual role has not yet been resolved. Our recent studies suggest that voltage-dependent activation of the RyR channel is mediated by a pair of interacting N-terminal and central domains, designated as the ‘domain switch’. To investigate the effect of peptide C (a peptide corresponding to residues Glu724–Pro760) on domain- switch-mediated activation of the RyR, we measured Ca2+ release induced by DP (domain peptide) 1 or DP4 (which activates the RyR by mediation of the domain switch) and followed the Ca2+ release time course using a luminal Ca2+ probe (chlortetracycline) under Ca2+-clamped conditions. Peptide C produced a significant potentiation of the domain-switch-mediated Ca2+ release, provided that the Ca2+ concentration was sufficiently low (e.g. 0.1 μM) and the Ca2+ channel was only partially activated by the domain peptide. However, at micromolar Ca2+ concentrations, peptide C inhibits activation. Covalent cross-linking of fluorescently labelled peptide C to the RyR and screening of the fluorescently labelled tryptic fragments permitted us to localize the peptide-C-binding site to residues 450–1400, which may represent the primary region involved in physical coupling. Based on the above findings, we propose that the physiological role of residues Glu724–Pro760 is to facilitate depolarization-induced and domain-switch-mediated RyR activation at sub- or near-threshold concentrations of cytoplasmic Ca2+ and to suppress activation upon an increase of cytoplasmic Ca2+.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3