The HDAC2/SP1/miR-205 feedback loop contributes to tubular epithelial cell extracellular matrix production in diabetic kidney disease

Author:

Zheng Zongji12ORCID,Zhang Shuting13,Chen Jiaqi1,Zou Meina1,Yang Yanlin1,Lu Wen14,Ren Shijing1,Wang Xiangyu1,Dong Wenhui1,Zhang Zikun1,Wang Ling1,Guan Meiping1,Cheing Gladys L.Y.2,Xue Yaoming1,Jia Yijie1ORCID

Affiliation:

1. Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China

2. Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China

3. Department of Endocrinology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China

4. Department of Endocrinology and Metabolism, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China

Abstract

Abstract Extracellular matrix (ECM) accumulation is considered an important pathological feature of diabetic kidney disease (DKD). Histone deacetylase (HDAC) inhibitors protect against kidney injury. However, the potential mechanisms of HDACs in DKD are still largely unknown. Here, we describe a novel feedback loop composed of HDAC2 and miR-205 that regulates ECM production in tubular epithelial cells in individuals with DKD. We found that HDAC2 mRNA expression in peripheral blood was markedly higher in patients with DKD than in patients with diabetes. Nuclear HDAC2 protein expression was increased in TGFβ1-stimulated tubular epithelial cells and db/db mice. We also found that miR-205 was regulated by HDAC2 and down-regulated in TGFβ1-treated HK2 cells and db/db mice. In addition, HDAC2 reduced histone H3K9 acetylation in the miR-205 promoter region to inhibit its promoter activity and subsequently suppressed miR-205 expression through an SP1-mediated pathway. Furthermore, miR-205 directly targeted HDAC2 and inhibited HDAC2 expression. Intriguingly, miR-205 also regulated its own transcription by inhibiting HDAC2 and increasing histone H3K9 acetylation in its promoter, forming a feedback regulatory loop. Additionally, the miR-205 agonist attenuated ECM production in HK2 cells and renal interstitial fibrosis in db/db mice. In conclusion, the HDAC2/SP1/miR-205 feedback loop may be crucial for the pathogenesis of DKD.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3