Abstract
The isolated NADH-ubiquinone oxidoreductase complex of bovine heart mitochondria reduces ubiquinone analogues by two pathways. One pathway is inhibited by rotenone, and reduction of quinones takes place in the lipid phase of the system. The other pathway is insensitive to rotenone and reduction takes place in the aqueous phase. The variation of rates of electron transpport with the chemical nature of the quinone analogue and the concentrations of both quinone and phospholipid can be rationalized in terms of partition of the quinone between the aqueous and lipid phases of the system. Thus one function of phospholipid associated with the enzyme appears to be to act as solvent for ubiquinone reduced by the rotenone-sensitive pathway. This proposal is supported by the kinetic behaviour of enzyme whose endogenous lipids have been replaced by (1,2)-dimyristoylsn-glycero-3-phosphocholine. Thus, under certain circumstances, the rotenone-sensitive reduction of ubiquinone-1 exhibited a substantial increase in activation energy below the phase-transition temperature of the synthetic lipid, whereas the reduction of other acceptors was unaffected.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献