Photo-oxidation of 5-enolpyruvoylshikimate-3-phosphate synthase from Escherichia coli: evidence for a reactive imidazole group (His385) at the herbicide glyphosate-binding site

Author:

Huynh Q K1

Affiliation:

1. Department of Protein Biochemistry, Monsanto Corporate Research, The Monsanto Company, St. Louis, MO 63198, U.S.A.

Abstract

Photo-oxidation of Escherichia coli 5-enolpyruvoylshikimate-3-phosphate synthase, a target for the non-selective herbicide glyphosate (N-phosphonomethylglycine), in the presence of pyridoxal 5′-phosphate resulted in irreversible inactivation of the enzyme. The inactivation followed pseudo-first-order and saturation kinetics with a Kinact. of 50 microM. The inactivation is specifically prevented by preincubation of the enzyme with the combination of shikimate 3-phosphate and glyphosate. Increasing glyphosate concentration during preincubation resulted in a decreasing rate of inactivation. On 95% inactivation, approximately one histidine per molecule of enzyme was oxidized. Tryptic mapping of the enzyme modified in the absence and presence of shikimate 3-phosphate and glyphosate as well as analyses of the histidine content in the isolated peptides indicated that His385, in the peptide Asn383-Asp-His-Arg386, was the site of oxidation. These results suggest that His385 is the most accessible reactive imidazole group under these conditions and is located close to the glyphosate-binding site.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3