Chemical heterogeneity as a result of hydroxylamine cleavage of a fusion protein of human insulin-like growth factor I

Author:

Canova-Davis E1,Eng M1,Mukku V1,Reifsnyder D H2,Olson C V2,Ling V T1

Affiliation:

1. Department of Medicinal and Analytical Chemistry, Genentech Inc., 460 Point San Bruno Boulevard, South San Francisco, CA 94080, U.S.A.

2. Department of Process Sciences, Genentech Inc., 460 Point San Bruno Boulevard, South San Francisco, CA 94080, U.S.A.

Abstract

Recombinant DNA techniques were used to biosynthesize human insulin-like growth factor I (hIGF-I) as a fusion protein wherein the fusion polypeptide is an IgG-binding moiety derived from staphylococcal protein A. This fusion protein is produced in Escherichia coli and secreted into the fermentation broth. In order to release mature recombinant-derived hIGF-I (rhIGF-I), the fusion protein is treated with hydroxylamine, which cleaves a susceptible Asn-Gly bond that has been engineered into the fusion protein gene. Reversed-phase h.p.l.c. was used to estimate the purity of the rhIGF-I preparations, especially for the quantification of the methionine sulphoxide-containing variant. It was determined that hydroxylamine cleavage of the fusion protein produced, as a side reaction, hydroxamates of the asparagine and glutamine residues in rhIGF-I. Although isoelectric focusing was effective in detecting, and reversed-phase h.p.l.c. for producing enriched fractions of the hydroxamate variants, ion-exchange chromatography was a more definitive procedure, as it allowed quantification and facile removal of these variants. The identity of the variants as hydroxamates was established by Staphylococcus aureus V8 proteinase digestion, followed by m.s., as the modification was transparent to amino acid and N-terminal sequence analyses. The biological activity of rhIGF-I was established by its ability to incorporate [3H]thymidine into the DNA of BALB/c373 cells and by a radioreceptor assay utilizing human placental membranes. Both assays demonstrate that the native, recombinant and methionine sulphoxide and hydroxamate IGF-I variants are essentially equipotent.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3