Proteins of the kidney microvillar membrane. Purification and properties of the phosphoramidon-insensitive endopeptidase (‘endopeptidase-2’) from rat kidney

Author:

Kenny A J1,Ingram J1

Affiliation:

1. Department of Biochemistry, University of Leeds, U.K.

Abstract

A second endopeptidase is present in the renal microvillar membrane of rats that can be distinguished from endopeptidase-24.11 by its insensitivity to inhibition by phosphoramidon. The purification of this enzyme, referred to as endopeptidase-2, is described. The enzyme was efficiently released from the membrane by treatment with papain. The subsequent four steps depended on ion-exchange and gel-filtration chromatography. These steps were monitored by the hydrolysis of various substrates: 125I-insulin B chain (the normal assay substrate), benzoyl-L-tyrosyl-p-aminobenzoate (Bz-Tyr-pAB), azocasein and benzyloxycarbonyl-L-phenylalanyl-L-arginine 7-amino-4-methylcoumarylamide (Z-Phe-Arg-NMec). All four assays revealed comparable stepwise increases in activity in the main stages of the purification, although it was apparent that the last-named fluorogenic assay depended on traces of aminopeptidase activity present in the preparation. The Km for 125I-insulin B chain was 16 microM and that for Bz-Tyr-pAB was 4.7 mM. Several experimental approaches confirmed that both peptides were hydrolysed by the same enzyme. The pH optimum was 7.3. Phosphate buffers were inhibitory and shifted the optimum to above pH 9. Zinc was detected in the purified enzyme; EDTA and 1,10-phenanthroline were strongly inhibitory. SDS/polyacrylamide-gel electrophoresis revealed polypeptides of equal staining intensity of Mr 80,000 and 74,000 in reducing conditions. In non-reducing conditions a single band of apparent Mr 220,000 was seen. Gel filtration yielded an Mr of 436,000. These results are consistent with an oligomeric structure in which the alpha and beta chains are linked by disulphide bridges. Endopeptidase-2 hydrolysed a number of neuropeptides. Enkephalins resisted attack, only the heptapeptide [Met]enkephalin-Arg6-Phe7 being susceptible to slow hydrolysis. Luliberin (luteinizing-hormone-releasing hormone) and bradykinin were rapidly hydrolysed. Neurotensin was shown to be slowly attacked at the Tyr3-Glu4 bond. Thus the specificity appears to be limited to the hydrolysis of bonds involving the carboxy group of aromatic residues, provided that this P1 residue is extended by additional residues, at least to the P3′ position. The relationship of this membrane metalloendopeptidase to mouse meprin and human ‘PABA peptidase’ is discussed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3