Studies on the inhibition of ferrochelatase by N-alkylated dicarboxylic porphyrins. Steric factors involved and evidence that the inhibition is reversible

Author:

De Matteis F,Gibbs A H,Harvey C

Abstract

The structural requirements for the inhibition of ferrochelatase by N-alkylated porphyrins were investigated and experiments carried out to explore the mechanism of enzyme inhibition. Three dicarboxylic porphyrins, all substrates of the enzyme, are strongly inhibitory when N-alkylated; in contrast, uroporphyrin and coproporphyrin (which are not substrates) do not inhibit after N-alkylation. Free carboxylic acid functions are required for inhibition, as the methyl ester derivatives are not themselves inhibitory. Porphyrins bearing the alkyl group on the pyrrole nitrogen of rings C and D are less effective inhibitors, particularly when zinc is chelated in the centre of the tetrapyrrole or the N-alkyl group is relatively large in size. The substituents at the 2- and 4-positions of the porphyrin system may also affect the inhibitory activity, particularly for the isomers with ring C and D alkylated. The zinc chelates of several N-alkylprotoporphyrins are inhibitory towards haem oxygenase, another haem-binding enzyme, and also in this case increasing the size of the alkyl group decreased the inhibitory activity, particularly for isomers with ring C or D alkylated. The inhibition could be reversed by prolonged incubation with excess porphyrin substrate, but dealkylation of the N-alkylporphyrin during enzyme inhibition could not be demonstrated. It is concluded (a) that N-alkylated dicarboxylic porphyrins compete reversibly with the porphyrin substrate for the enzyme active site and (b) that the structural and steric factors discussed above affect the inhibitory activity by modifying the affinity of the N-alkylporphyrin inhibitor for the enzyme.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3