A comparison and optimization of methods and factors affecting the transformation of Escherichia coli

Author:

Chan Weng-Tat1,Verma Chandra S.123,Lane David P.34,Gan Samuel Ken-En1

Affiliation:

1. Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore 138671

2. Department of Biological Sciences, National University of Singapore (NUS), Singapore 119077

3. School of Biological Sciences, Nanyang Technological University (NTU), Singapore 639798

4. p53 Laboratory, Agency for Science, Technology, and Research (A*STAR), Singapore 138648

Abstract

DNA manipulation routinely requires competent bacteria that can be made using one of numerous methods. To determine the best methods, we compared four commonly used chemical methods (DMSO, MgCl2–CaCl2, CaCl2 and Hanahan's methods) on frequently used Escherichia coli (E. coli) strains: DH5α, XL-1 Blue, SCS110, JM109, TOP10 and BL21-(DE3)-PLysS. Hanahan's method was found to be most effective for DH5α, XL-1 Blue and JM109 strains (P<0.05), whilst the CaCl2 method was best for SCS110, TOP10 and BL21 strains (P<0.05). The use of SOB (super optimal broth) over LB [Luria–Bertani (broth)] growth media was found to enhance the competency of XL-1 Blue (P<0.05), dampened JM109′s competency (P<0.05), and had no effect on the other strains (P>0.05). We found no significant differences between using 45 or 90 s heat shock across all the six strains (P>0.05). Through further optimization by means of concentrating the aliquots, we were able to get further increases in transformation efficiencies. Based on the optimized parameters and methods, these common laboratory E. coli strains attained high levels of TrE (transformation efficiency), thus facilitating the production of highly efficient and cost-effective competent bacteria.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3