High-volume endurance exercise training stimulates hematopoiesis by increasing ACE NH2-terminal activity

Author:

Magalhães Flávio de Castro12ORCID,Fernandes Tiago1,Bassaneze Vinícius3,Mattos Katt Coelho1,Schettert Isolmar3,Marques Fabio Luiz Navarro4,Krieger José Eduardo3ORCID,Nava Roberto5,Barauna Valério Garrone6,Edilamar Menezes Oliveira1

Affiliation:

1. Laboratory of Biochemistry of the Motor Activity, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil

2. Laboratory of Exercise Biology, Integrated Center of Health Research, Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas-Federal University of the Jequitinhonha and Mucuri Valleys, 5000 MGT 367 Road-km 583-Alto da Jacuba, 39100-000, Diamantina, Minas Gerais, Brazil

3. Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), Medical School, University of Sao Paulo, Sao Paulo, Brazil

4. Radiopharmacy Laboratory, Nuclear Medicine Center, Medical School, University of Sao Paulo, Sao Paulo, Brazil

5. Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM 87131, U.S.A.

6. Laboratory of Molecular and Cellular Physiology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil

Abstract

Abstract One of the health benefits of endurance exercise training (ET) is the stimulation of hematopoiesis. However, the mechanisms underlying ET-induced hematopoietic adaptations are understudied. N–Acetyl–Seryl–Aspartyl–Lysyl–Proline (Ac-SDKP) inhibits proliferation of early hematopoietic progenitor cells. The angiotensin I-converting enzyme (ACE) NH2-terminal promotes hematopoiesis by inhibiting the anti-hematopoietic effect of Ac-SDKP. Here we demonstrate for the first time the role of ACE NH2-terminal in ET-induced hematopoietic adaptations. Wistar rats were subjected to 10 weeks of moderate-(T1) and high-(T2) volume swimming-training. Although both protocols induced classical ET-associated adaptations, only T2 increased plasma ACE NH2-domain activity (by 40%, P=0.0003) and reduced Ac-SDKP levels (by 50%, P<0.0001). T2 increased the number of hematopoietic stem cells (HSCs; ∼200%, P=0.0008), early erythroid progenitor colonies (∼300%, P<0.0001) and reticulocytes (∼500%, P=0.0007), and reduced erythrocyte lifespan (∼50%, P=0.022). Following, Wistar rats were subjected to T2 or T2 combined with ACE NH2-terminal inhibition (captopril (Cap) treatment: 10 mg.kg−1.day−1). T2 combined with ACE NH2-terminal inhibition prevented Ac-SDKP decrease and attenuated ET-induced hematopoietic adaptations. Altogether, our findings show that ET-induced hematopoiesis was at least partially associated with increased ACE NH2-terminal activity and reduction in the hematopoietic inhibitor Ac-SDKP.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3