Delayed oxidative degradation of polyunsaturated diacyl phospholipids in the presence of plasmalogen phospholipids in vitro

Author:

REISS Daniela1,BEYER Klaus2,ENGELMANN Bernd1

Affiliation:

1. Physiologisches Institut der Universität München, Pettenkoferstr. 12, D-80336 München, Germany

2. Institut für Physikalische Biochemie der Universität München, Pettenkoferstr. 12, D-80336 München, Germany

Abstract

The oxidative degradation of plasmalogen (alkenylacyl) phospholipids was analysed in the absence and the presence of polyunsaturated ester phospholipids by 1H-NMR and by chemical determination. Brain lysoplasmenylethanolamine (lyso-P-PE), brain P-PE and erythrocyte P-PE, containing an increasing number of intrachain double bonds at sn2, were oxidized with 2,2´-azobis-(2-amidinopropane hydrochloride) (AAPH; 2 or 10 mM) in Triton X-100 micelles (detergent/phospholipid 1:5, mol/mol). The formation of two peroxyl radicals was accompanied by the degradation of approx. one molecule of brain lyso-P-PE. On oxidation of brain P-PE or erythrocyte P-PE (320 nmol) with 2 mM AAPH, the (α-vinyl) methine 1H signal of the enol ether decreased more rapidly than the methine proton peak of intrachain double bonds. The rate of enol ether degradation increased in the order: erythrocyte P-PE > brain P-PE > brain lyso-P-PE. The disappearance of the polyunsaturated ester phospholipids 1-palmitoyl-2-arachidonoyl phosphatidylcholine (16:0/20:4-PC) and 1-palmitoyl-2-linoleoyl phosphatidylcholine (16:0/18:2-PC) (100 nmol), as induced by 10 mM AAPH, was nearly completely inhibited by the plasmalogens (25 nmol) in the first 30 and 60 min of incubation respectively, and was delayed at later time points. Plasmalogens and vitamin E (4–25 nmol) mitigated the decreases in 16:0/[3H]20:4-PC (100 nmol) induced by 2 mM AAPH in a similar manner. The initial rate of degradation of intrachain double bonds of 16:0/20:4-PC and 16:0/18:2-PC (320 nmol; 2 mM AAPH) was decreased by 59% and 81% respectively in the presence of 80 nmol of brain lyso-P-PE. In conclusion, plasmalogens markedly delay the oxidative degradation of intrachain double bonds under in vitro conditions. Interactions of enol ether double bonds with initiating peroxyl radicals as well as with products generated by prior oxidation of polyunsaturated fatty acids are proposed to be responsible for this capacity of plasmalogens. Furthermore, the products of enol ether oxidation apparently do not propagate the oxidation of polyunsaturated fatty acids.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3