Arginine-rich peptides and their internalization mechanisms

Author:

Futaki S.12,Nakase I.1,Tadokoro A.2,Takeuchi T.1,Jones A.T.3

Affiliation:

1. Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan

2. SORST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan

3. Welsh School of Pharmacy, Cardiff University, Cardiff, Wales CF10 3XF, U.K.

Abstract

As the versatility and use of CPPs (cell-penetrating peptides) as intracellular delivery vectors have been widely accepted, the cellular uptake mechanisms that enable their efficient internalization have become the subject of much interest. Arginine-rich peptides, including HIV-1 Tatp (transactivator of transcription peptide), are regarded as a representative class of CPPs. Evidence suggests that macropinocytosis plays a crucial role in the cellular uptake of these peptides. We have recently shown that treatment of cells with arginine-rich peptides induces activation of Rac protein leading to F-actin (filamentous actin) organization and macropinocytosis. We have also shown that depletion of membrane-associated proteoglycans results in the failure of this signalling pathway, suggesting that membrane-associated proteoglycans may act as a potential receptor for the induction of macropinocytic uptake of arginine-rich peptides. However, when the macropinocytic pathway is inhibited at a low temperature or by cholesterol depletion, these peptides can be internalized by alternative mechanisms, one of which appears to be direct translocation of the peptides through the plasma membrane. This review summarizes the current theories on both endocytic and non-endocytic aspects of internalization of arginine-rich peptides.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3