Abstract
In the liver, it appears that there are two different pathways for vitamin K reduction. One pathway is irreversibly inhibited by coumarin anticoagulant drugs. The other pathway has been shown in the present study to be composed of enzymes that are not effected by physiological ‘in vivo’ concentrations of these drugs. This pathway appears to be responsible for the antidotal effect of vitamin K in overcoming coumarin poisoning. In rat liver the pathway has been shown to be composed of DT-diaphorase (EC.1.6.99.2) and a microsomal dehydrogenase(s). The activity of the microsomal dehydrogenase(s) was 3.6-fold higher with NADH than with NADPH present in the test system. It appears that this enzyme is the physiologically important enzyme in the pathway. In contrast with DT-diaphorase, this enzyme(s) is shown to be tightly associated with the mirosomal membrane. The enzyme(s) is not identical with either of the quinone-reducing enzymes cytochrome P-450 reductase or cytochrome-b5 reductase. Our data thus postulate the existence of an as-yet-unidentified microsomal dehydrogenase that appears to have an important function in the pathway.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献