Abstract
After cleavage of the thioester bonds of human alpha 2-macroglobulin (alpha 2M) by methylamine, the inhibitor undergoes an extensive conformational change and loses its ability to bind proteinases. In contrast, similar cleavage in the presence of dinitrophenyl thiocyanate, a reagent that cyanylates the liberated thiol groups, does not change the mobility of alpha 2M in gel electrophoresis, and the inhibitor also retains activity [Van Leuven, Marynen, Cassiman & Van den Berghe (1982) Biochem. J. 203, 405-411]. Analyses in this work show that also the spectroscopic properties of alpha 2M are essentially unperturbed under these conditions. These observations are consistent with the major change of the conformation of the protein having been arrested by the cyanylation reaction. However, several functional properties of the protein are altered, indicating that a limited conformational change does occur. The apparent stoichiometry of binding of trypsin is thus decreased to about 0.5 mol of enzyme/mol of alpha 2M. Nevertheless trypsin induces a similar conformational change in all molecules of the modified inhibitor as that induced in untreated alpha 2M. This behaviour indicates a similar mode of binding of the enzyme to the modified alpha 2M as to intact alpha 2M, but also a high extent of non-productive activation of binding sites in the modified inhibitor. A further difference to untreated alpha 2M is that most of the bound trypsin molecules react considerably faster with soya-bean trypsin inhibitor. The rate of inhibition of thrombin is also greatly decreased, and the modified inhibitor is more sensitive than untreated alpha 2M to proteolysis at sites outside the ‘bait’ region. The properties of the cyanylated human alpha 2M are thus similar to those of bovine alpha 2M in which the thioester bonds have been cleaved by methylamine in the absence of the cyanylating reagent [Björk, Lindblom & Lindahl (1985) Biochemistry 24, 2653-2660]. These results indicate that the thioester bonds of human and bovine alpha 2M are not required as such for the stability of the gross conformation of the protein or for the binding of proteinases. Nevertheless they participate directly in maintaining certain structural features, similar in the two inhibitors, that are necessary for full proteinase-binding ability. Disruption of these structures leads to a slower and less efficient trapping of the enzymes.
Subject
Cell Biology,Molecular Biology,Biochemistry