Determination of the rates of appearance and loss of glucose transporters at the cell surface of rat adipose cells

Author:

Clark A E1,Holman G D1,Kozka I J1

Affiliation:

1. Department of Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.

Abstract

We have used an impermeant bis-mannose compound (2-N-[4-(1-azi-2,2,2-trifluoroethyl)benzoyl]-1,3-bis-(D-mannos+ ++- 4-yloxy)-2- propylamine; ATB-BMPA) to photolabel the glucose transporter isoforms GLUT4 and GLUT1 that are present in rat adipose cells. Plasma-membrane fractions and light-microsome membrane fractions were both labelled by ATB-BMPA. The labelling of GLUT4 in the plasma membrane fraction from insulin-treated cells was approximately 3-fold higher than that of basal cells and corresponded with a decrease in the labelling of the light-microsome fraction. In contrast with this, the cell-surface labelling of GLUT4 from insulin-treated intact adipose cells was increased approximately 15-fold above basal levels. In these adipose cell preparations, insulin stimulated glucose transport activity approximately 30-fold. Thus the cell-surface labelling, but not the labelling of membrane fractions, closely corresponded with the stimulation of transport. The remaining discrepancy may be due to an approx. 2-fold activation of GLUT4 intrinsic transport activity. We have studied the kinetics of trafficking of transporters and found the following. (1) Lowering the temperature to 18 degrees C increased basal glucose transport and levels of cell-surface glucose transporters by approximately 3-fold. This net increase in transporters probably occurs because the process of recruitment of transporters is less temperature-sensitive than the process involved in internalization of cell-surface transporters. (2) The time course for insulin stimulation of glucose transport activity occurred with a slight lag period of 47 s and a t 1/2 3.2 min. The time course of GLUT4 and GLUT1 appearance at the cell surface showed no lag and a t 1/2 of approximately 2.3 min for both isoforms. Thus at early times after insulin stimulation there was a discrepancy between transporter abundance and transport activity. The lag period in the stimulation of transport activity may represent the time required for the approximately 2-fold stimulation of transporter intrinsic activity. (3) The decrease in transport activity after insulin removal occurred with a very high activation energy of 159 kJ.mol-1. There was thus no significant decrease in transport or less of cell-surface transporters over 60 min at 18 degrees C. The decrease in transport activity occurred with a t1/2 of 9-11 min at 37 degrees C.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3