Abstract
1. Enzyme activities (units/g wet wt.) were determined in the caput and cauda epididymidis and in epididymal spermatozoa of the rat. 2. The activity of most enzymes in the cauda was between 50 and 100% of that in the caput, except that ATP citrate lyase was barely detectable in the cauda. 3. Spermatozoa, unlike epididymal tissue, contained sorbitol dehydrogenase but lacked ATP citrate lyase. NADP+-malate dehydrogenase, mitochondrial glycerol 3-phosphate dehydrogenase, succinate dehydrogenase, carnitine acetyltransferase and citrate synthase were 5 to 400 times as active in spermatozoa as in epididymal tissue. 4. 2-Oxoglutarate dehydrogenase was the least active member of the tricarboxylic acid cycle in all tissues and most closely matched the measured flux through the cycle. 5. The concentrations of hydroxyacyl-CoA dehydrogenase and carnitine palmitoyltransferase were equivalent to the more active enzymes of the tricarboxylic acid cycle, indicating the capacity for extensive lipid oxidation, and the presence of 3-hydroxybutyrate dehydrogenase suggests that these tissues can also oxidize ketone bodies. 6. Transfer of reducing equivalents from cytoplasm to mitochondrion is unlikely to occur by means of the glycerol phosphate cycle because mitochondrial glycerol 3-phosphate dehydrogenase is relatively inactive in epididymal tissue, whereas the cytoplasmic enzyme has little activity in spermatozoa, but transfer may be accomplished by the malate-aspartate shuttle. 7. Transfer of acetyl units from mitochondrion to cytoplasm could be effected by the pyruvate-malate cycle in the caput of androgen-maintained rats, but not in the other tissues because of the low activity of ATP citrate lyase. Acetyl unit transfer could take place via acetylcarnitine, mediated by carnitine acetyltransferase. 8. Castration resulted in a decrease in the concentration of nearly all enzymes, although subsequent administration of testosterone restored concentrations to values similar to those in animals maintained by endogenous androgen. The extent to which enzyme concentration was changed by an alteration in androgen status was highly variable, but was most marked in the case of pyruvate carboxylase.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献