Susceptibility of the cysteine-rich N-terminal and C-terminal ends of rat intestinal mucin Muc 2 to proteolytic cleavage

Author:

KHATRI Ismat A.1,FORSTNER Gordon G.12,FORSTNER Janet F.131

Affiliation:

1. Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada

2. Department of Pediatrics, University of Toronto, Toronto, Ontario MSG 1X8, Canada

3. Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1X8, Canada

Abstract

The present study reveals that partial proteolytic degradation of rat Muc 2 mucin can occur rapidly even in the presence of a battery of proteinase inhibitors. During the initial steps of purification from homogenates of intestinal scrapings, degradation was rapid, causing release of the entire 118 kDa C-terminal glycopeptide and, as shown by N-terminal sequencing, a large (200 kDa) N-terminal glycopeptide fragment. Degradation could be prevented by adding 6 M guanidinium chloride provided that its presence was maintained throughout every step of purification. Even after purification, however, the mucin was still vulnerable to partial proteolysis unless it was stored in guanidinium chloride at -20 °C. These findings imply that a potent proteinase contaminant remains tightly bound to the mucin through every step of purification, or else that the mucin has autocatalytic properties. Because the C- and N-terminal regions of secretory mucins are required for their assembly into linear mucin polymers that form functional gels, our findings emphasize that extreme care is required to purify structurally intact mucin molecules. They also imply that the specific degradation steps described here are likely to occur rapidly after mucins are secreted into the intestinal lumen and come into contact with the products of sloughed cells.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3