Effect of amino acid residues at the cleavable site of substrates on the remarkable activation of thermolysin by salts

Author:

INOUYE Kuniyo1,LEE Soo-Bok1,TONOMURA Ben'ichiro1

Affiliation:

1. Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan

Abstract

The activity of thermolysin in the hydrolysis of N-[3-(2-furyl)acryloyl]-glycyl-L-leucine amide and N-carbobenzoxy-L-aspartyl-L-phenylalanine methyl ester is remarkably enhanced in the presence of high concentrations (1–5 M) of neutral salts [Inouye (1992) J. Biochem. (Tokyo) 112, 335–340]. In this study, the effect of salts on such activity has been examined using a series of substrates, furylacryloyl dipeptide amides, which have various hydrophobic amino acids at the cleavable bond. Although the enzyme activity varies widely depending on the substrate employed, the degree of activation at a given concentration of NaCl is considerably similar. This indicates that the degree of activation is not dependent on the hydrophobicity of the amino acid side chains at the scissile bond of the substrates. The molecular activity, kcat, and Michaelis constant, Km, were evaluated separately for substrates N-[3-(2-furyl)acryloyl]-L-leucyl-L-alanine amide and N-[3-(2-furyl)acryloyl]-L-phenylalanyl-L-alanine amide, and the activation was found to be brought about only by an increase in kcat. The effectiveness of monovalent cations on the increase of kcat was determined to follow the order of Na+ > K+ > Li+.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3