Variation in the pH-dependent pre-steady-state and steady-state kinetic characteristics of cysteine-proteinase mechanism: evidence for electrostatic modulation of catalytic-site function by the neighbouring carboxylate anion

Author:

HUSSAIN Syeed1,PINITGLANG Surapong1,BAILEY Tamara S. F.1,REID James D.1,NOBLE Michael A.1,RESMINI Marina2,THOMAS Emrys W.3,GREAVES Richard B.4,VERMA Chandra S.5,BROCKLEHURST Keith1

Affiliation:

1. Laboratory of Structural and Mechanistic Enzymology, School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, U.K.

2. Department of Chemistry, Queen Mary, University of London, Mile End Road, London E1 4NS, U.K.

3. Department of Biological Sciences, University of Salford, The Crescent, Salford M5 4JW, U.K.

4. Department of Biology, University of York, University Road, Heslington, York Y01 5DD, U.K.

5. Structural Biology Laboratory, Department of Chemistry, University of York, University Road, Heslington, York Y01 5DD, U.K.

Abstract

The acylation and deacylation stages of the hydrolysis of N-acetyl-Phe-Gly methyl thionoester catalysed by papain and actinidin were investigated by stopped-flow spectral analysis. Differences in the forms of pH-dependence of the steady-state and pre-steady-state kinetic parameters support the hypothesis that, whereas for papain, in accord with the traditional view, the rate-determining step is the base-catalysed reaction of the acyl-enzyme intermediate with water, for actinidin it is a post-acylation conformational change required to permit release of the alcohol product and its replacement in the catalytic site by the key water molecule. Possible assignments of the kinetically influential pKa values, guided by the results of modelling, including electrostatic-potential calculations, and of the mechanistic roles of the ionizing groups, are discussed. It is concluded that Asp161 is the source of a key electrostatic modulator (pKa 5.0±0.1) in actinidin, analogous to Asp158 in papain, whose influence is not detected kinetically; it is always in the ‘on’ state because of its low pKa value (2.8±0.06).

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3