Activation of procathepsin B in human hepatoma cells: the conversion into the mature enzyme relies on the action of cathepsin B itself

Author:

Mach L1,Schwihla H1,Stüwe K1,Rowan A D2,Mort J S23,Glössl J1

Affiliation:

1. Zentrum für Angewandte Genetik, Universität für Bodenkultur, Gregor-Mendelstrasse 33, A-1180 Wien, Austria

2. Joint Diseases Laboratory, Shriners Hospital for Crippled Children, 1529 Cedar Avenue, Montreal, Quebec H3G 1A6, Canada

3. Department of Surgery, McGill University, Montreal, Quebec H3A 2T6, Canada

Abstract

In order to elucidate the processing mechanism of the lysosomal cysteine proteinase, cathepsin B, in mammalian cells, recombinant rat and human cathepsin B precursors were expressed in Saccharomyces cerevisiae. The active-site cysteine residue was changed to serine to prevent autoprocessing. When the purified proenzymes were incubated with the soluble fraction of postnuclear organelles obtained from human hepatoma HepG2 cells, processing to a 33 kDa form corresponding to the mature endogenous single-chain enzyme was observed. Inhibitors of metallo-, serine and aspartic proteinases exerted no significant effect on procathepsin B processing in vitro. However, the processing activity was effectively blocked by cysteine proteinase inhibitors, in particular E-64 and its cathepsin-B-selective derivative CA-074. Processing positions were identified by using anti-peptide antibodies specific for epitopes in the N- and C-terminal cleavage regions. The single-chain form produced in vitro was thus shown to contain an N-terminal extension of at least four residues relative to the mature lysosomal enzyme, as well as a C-terminal extension present in the proenzyme but usually absent in fully processed cathepsin B. On expression of the wild-type proenzyme in yeast, procathepsin B undergoes autoprocessing, yielding a single-chain form of the active enzyme, which contains similar N- and C-terminal extensions. These results indicate that maturation of procathepsin B in vivo in mammalian tissues relies on the proteolytic activity of cathepsin B itself.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3