Toxins for decoding interface selectivity in nicotinic acetylcholine receptors

Author:

Kini R. Manjunatha1ORCID

Affiliation:

1. Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore

Abstract

Abstract Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels that play crucial roles in neurotransmission and regulate complex processes in brain functions, including anxiety, learning and memory, food intake, drug addiction, cognition and nociception. To perform these and other functions, a diverse array of nAChR subtypes are generated by homomeric or heteromeric assembly of 17 homologous nAChR subunits. Agonists, acetylcholine and nicotine, bind to the interface formed between two α subunits and between α and non-α subunits to activate the nAChR and allow cation influx. The diversity of subunit interfaces determines the channel properties, the responses to different agonists/antagonists, desensitization and downstream signaling and thus, define specialized properties and functions. Over the last several decades, snake venom neurotoxins have contributed to the purification, localization and characterization of molecular details of various nAChRs. Utkin et al. have described the purification and characterization of αδ-bungarotoxins, a novel class of neurotoxins in a recent paper published in the Biochemical Journal [Biochem. J. (2019) 476, 1285–1302]. These toxins from Bungarus candidus venom preferably bind to α–δ site with two orders of magnitude higher affinity compared with α–γ or α–ε sites. The subtle changes in the structure of αδ-bungarotoxins led to variation in interface selectivity. Such new classes of antagonists will offer us great opportunity to delineate the pharmacophores and design new highly selective antagonists. Thus, their findings provide new impetus to re-evaluate molecular details of pharmacological properties of α-neurotoxins with careful consideration towards subtype-, interface- and species-selectivity.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference31 articles.

1. Isolation of neurotoxins from the venom of Bungarus multicinctus and their modes of neuromuscular blocking action;Arch. Int. Pharmacodyn. Ther.,1963

2. Use of a snake venom toxin to characterize the cholinergic receptor protein;Proc. Natl Acad. Sci. U.S.A.,1970

3. Mammalian nicotinic acetylcholine receptors: from structure to function;Physiol. Rev.,2009

4. End-plate acetylcholine receptor: structure, mechanism, pharmacology, and disease;Physiol. Rev.,2012

5. Diversity of native nicotinic receptor subtypes in mammalian brain;Neuropharmacology,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3