Epitope-specific antibody-induced cleavage of angiotensin-converting enzyme from the cell surface

Author:

BALYASNIKOVA Irina V.1,KARRAN Eric H.2,ALBRECHT Ronald F.1,DANILOV Sergei M.1

Affiliation:

1. Department of Anesthesiology, University of Illinois at Chicago, 1819 W. Polk St. (M/C 519), Chicago, IL 60612, U.S.A.

2. SmithKline Beecham Pharmaceuticals, Harlow CM19 5AW, Essex, U.K.

Abstract

Angiotensin I-converting enzyme (ACE; CD143, EC 3.4.15.1) is a type-1 integral membrane protein that can also be released into extracellular fluids (such as plasma, and seminal and cerebrospinal fluids) as a soluble enzyme following cleavage mediated by an unidentified protease(s), referred to as ACE secretase, in a process known as ‘shedding'. The effects of monoclonal antibodies (mAbs) to eight different epitopes on the N-terminal domain of ACE on shedding was investigated using Chinese hamster ovary cells (CHO cells) expressing an ACE transgene and using human umbilical vein endothelial cells. Antibody-induced shedding of ACE was strongly epitope-specific: most of the antibodies increased the shedding by 20–40%, mAbs 9B9 and 3A5 increased the shedding by 270 and 410% respectively, whereas binding of mAb 3G8 decreased ACE shedding by 36%. The ACE released following mAb treatment lacked a hydrophobic transmembrane domain anchor. The antibody-induced shedding was completely inhibited at 4°C and by zinc chelation using 1,10-phenanthroline, suggesting involvement of a metalloprotease in this process. A hydroxamate-based metalloprotease inhibitor (batimastat, BB-94) was 15 times more efficacious in inhibiting mAb-induced ACE shedding than basal (constitutive) ACE release. Treatment of CHO-ACE cells with BB-94 more effectively prevented elevation in antibody-dependent (but not basal) ACE release induced by 3,4-dichloroisocoumarin and iodoacetamide. These data suggest that different secretases might be responsible for ACE release under basal compared with antibody-induced shedding. Further experiments with more than 40 protease inhibitors suggest that calpains, furin and the proteasome may participate in this process.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3