Induction of ketogenesis and fatty acid oxidation by glucagon and cyclic AMP in cultured hepatocytes from rabbit fetuses. Evidence for a decreased sensitivity of carnitine palmitoyltransferase I to malonyl-CoA inhibition after glucagon or cyclic AMP treatment

Author:

Pégorier J P1,Garcia-Garcia M V1,Prip-Buus C1,Duée P H1,Kohl C1,Girard J1

Affiliation:

1. Centre de Recherche sur la Nutrition, 9 rue Jules Hetzel, 92190 Meudon-Bellevue, France

Abstract

The effects of pancreatic hormones and cyclic AMP on the induction of ketogenesis and long-chain fatty acid oxidation were studied in primary cultures of hepatocytes from fetal and newborn rabbits. Hepatocytes were cultivated during 4 days in the presence of glucagon (10(-6) M), forskolin (2 x 10(-5) M), dibutyryl cyclic AMP (10(-4) M), 8-bromo cyclic AMP (10(-4) M) or insulin (10(-7) M). Ketogenesis and fatty acid metabolism were measured using [1-14C]oleate (0.5 mM). In hepatocytes from fetuses at term, the rate of ketogenesis remained very low during the 4 days of culture. In hepatocytes from 24-h-old newborn, the rate of ketogenesis was high during the first 48 h of culture and then rapidly decreased to reach a low value similar to that measured in cultured hepatocytes from term fetuses. A 48 h exposure to glucagon, forskolin or cyclic AMP derivatives is necessary to induce ketone body production in cultured fetal hepatocytes at a rate similar to that found in cultured hepatocytes from newborn rabbits. In fetal liver cells, the induction of ketogenesis by glucagon or cyclic AMP results from changes in the partitioning of long-chain fatty acid from esterification towards oxidation. Indeed, glucagon, forskolin and cyclic AMP enhance oleate oxidation (basal, 12.7 +/- 1.6; glucagon, 50.0 +/- 5.5; forskolin, 70.6 +/- 5.4; cyclic AMP, 77.5 +/- 3.4% of oleate metabolized) at the expense of oleate esterification. In cultured fetal hepatocytes, the rate of fatty acid oxidation in the presence of cyclic AMP is similar to the rate of oleate oxidation present at the time of plating (85.1 +/- 2.6% of oleate metabolized) in newborn rabbit hepatocytes. In hepatocytes from term fetuses, the presence of insulin antagonizes in a dose-dependent fashion the glucagon-induced oleate oxidation. Neither glucagon nor cyclic AMP affect the activity of carnitine palmitoyltransferase I (CPT I). The malonyl-CoA concentration inducing 50% inhibition of CPT I (IC50) is 14-fold higher in mitochondria isolated from cultured newborn hepatocytes (0.95 microM) compared with fetal hepatocytes (0.07 microM), indicating that the sensitivity of CPT I decreases markedly in the first 24 h after birth. The addition of glucagon or cyclic AMP into cultured fetal hepatocytes decreased by 80% and 90% respectively the sensitivity of CPT I to malonyl-CoA inhibition. In the presence of cyclic AMP, the sensitivity of CPT I to malonyl-CoA inhibition in cultured fetal hepatocytes is very similar to that measured in cultured hepatocytes from 24-h-old newborns.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3