Effect of inhaled methacholine on gas mixing efficiency

Author:

Langley F.1,Horsfield K.2,Burton G.3,Seed W. A.3,Parker S.4,Cumming G.5

Affiliation:

1. 2*Department of Medicine, Charing Cross Hospital, London

2. 3*Department of Medicine, Charing Cross Hospital, London

3. The Cardiothoracic Institute, Midhurst, West Sussex, U.K.

4. 6*Department of Medicine, Charing Cross Hospital, London

5. 7*Department of Medicine, Charing Cross Hospital, London

Abstract

1. Pulmonary function tests, including alveolar mixing efficiency by the single-breath and multi-breath methods, and ventilation scans were performed on 16 volunteer subjects. The tests were repeated after the inhalation of a methacholine aerosol in sufficient dosage to increase airways resistance. 2. After inhalation of methacholine there was a significant fall in mean series dead space of 31 ml (P < 0.05), and mean multi-breath alveolar mixing efficiency fell from 68% to 36% (P < 0.001), a fall occurring in all subjects. Mean single-breath alveolar mixing efficiency measured on the first breath of the nitrogen washout fell from 76% to 70%, but this change did not reach statistical significance (0.1 > P > 0.05). 3. In eight of the subjects, technically adequate lung scans and pulmonary function tests were obtained both before and not more than 30 min after methacholine inhalation. In seven there were obvious visible defects on the ventilation scans, and in five of these the computer-calculated underventilation score became abnormal. 4. Thus inhalation of methacholine causes maldistribution of ventilation, a fall in alveolar mixing efficiency and a fall in series dead space, presumably brought about by bronchoconstriction. The parallel component of this maldistribution of ventilation, as judged by 81mKr ventilation scanning, does not of itself seem to be sufficient to explain the fall in alveolar mixing efficiency, and therefore a degree of diffusion limitation is probably involved as well.

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3