Malaria, Plasmodium falciparum and its apicoplast

Author:

Kalanon Ming1,McFadden Geoffrey I.1

Affiliation:

1. School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia

Abstract

Malaria, which is caused by species of the parasite genus Plasmodium, remains a major global health problem. A vestigial plastid homologous with the chloroplasts of plants and algae was discovered in malaria and related parasites from the phylum Apicomplexa and has radically changed our view of the evolutionary origins of these disease-causing protists. We now recognize that this large group of parasites had a photosynthetic ancestry and were converted into parasitism early in the evolution of animals. Apicomplexans have probably been parasitizing the animal kingdom for more than 500 million years. The relic plastid persists in most apicomplexans and is an essential component. Perturbation of apicoplast function or inheritance results in parasite death, making the organelle a promising target for chemotherapy. Plastids, including those of malaria parasites, are essentially reduced endosymbiotic bacteria living inside a eukaryotic host. This means that plastids have bacterial-type metabolic pathways and housekeeping processes, all of which are vulnerable to antibacterial compounds. Indeed, many antibacterials kill malaria parasites by blocking essential processes in the plastid. Furthermore, a range of herbicides that target plastid metabolism of undesired plants are also parasiticidal, making them potential new leads for antimalarial drugs. In the present review, we examine the evolutionary origins of the malaria parasite's plastid by endosymbiosis and outline the recent findings on how the organelle imports nuclear-encoded proteins through a set of translocation machineries in the membranes that bound the organelle.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Reference64 articles.

1. World Malaria Report 2008 World Health Organization, Geneva;World Health Organization,2008

2. The origin of malignant malaria;Rich;Proc. Natl. Acad. Sci. U.S.A.,2009

3. The pathogenic basis of malaria;Miller;Nature,2002

4. Artemisinin resistance in Plasmodium falciparum malaria;Dondorp;N. Engl. J. Med.,2009

5. Phylum Apicomplexa;Levine,1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3