How a cell decides its own fate: a single-cell view of molecular mechanisms and dynamics of cell-type specification

Author:

Mircea Maria1,Semrau Stefan1ORCID

Affiliation:

1. Leiden Institute of Physics, Leiden University, Leiden, The Netherlands

Abstract

On its path from a fertilized egg to one of the many cell types in a multicellular organism, a cell turns the blank canvas of its early embryonic state into a molecular profile fine-tuned to achieve a vital organismal function. This remarkable transformation emerges from the interplay between dynamically changing external signals, the cell's internal, variable state, and tremendously complex molecular machinery; we are only beginning to understand. Recently developed single-cell omics techniques have started to provide an unprecedented, comprehensive view of the molecular changes during cell-type specification and promise to reveal the underlying gene regulatory mechanism. The exponentially increasing amount of quantitative molecular data being created at the moment is slated to inform predictive, mathematical models. Such models can suggest novel ways to manipulate cell types experimentally, which has important biomedical applications. This review is meant to give the reader a starting point to participate in this exciting phase of molecular developmental biology. We first introduce some of the principal molecular players involved in cell-type specification and discuss the important organizing ability of biomolecular condensates, which has been discovered recently. We then review some of the most important single-cell omics methods and relevant findings they produced. We devote special attention to the dynamics of the molecular changes and discuss methods to measure them, most importantly lineage tracing. Finally, we introduce a conceptual framework that connects all molecular agents in a mathematical model and helps us make sense of the experimental data.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3