Regulatory spine RS3 residue of protein kinases: a lipophilic bystander or a decisive element in the small-molecule kinase inhibitor binding?

Author:

Shevchenko Ekaterina1,Pantsar Tatu2ORCID

Affiliation:

1. Department of Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Strasse 14, Tübingen, DE 72076, Germany

2. School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland

Abstract

In recent years, protein kinases have been one of the most pursued drug targets. These determined efforts have resulted in ever increasing numbers of small-molecule kinase inhibitors reaching to the market, offering novel treatment options for patients with distinct diseases. One essential component related to the activation and normal functionality of a protein kinase is the regulatory spine (R-spine). The R-spine is formed of four conserved residues named as RS1–RS4. One of these residues, RS3, located in the C-terminal part of αC-helix, is usually accessible for the inhibitors from the ATP-binding cavity as its side chain is lining the hydrophobic back pocket in many protein kinases. Although the role of RS3 has been well acknowledged in protein kinase function, this residue has not been actively considered in inhibitor design, even though many small-molecule kinase inhibitors display interactions to this residue. In this minireview, we will cover the current knowledge of RS3, its relationship with the gatekeeper, and the role of RS3 in kinase inhibitor interactions. Finally, we comment on the future perspectives how this residue could be utilized in the kinase inhibitor design.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Progress on the Pharmacological Targeting of Janus Pseudokinases;Journal of Medicinal Chemistry;2023-08-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3