The Escherichia coli RNA processing and degradation machinery is compartmentalized within an organized cellular network

Author:

Taghbalout Aziz1,Yang Qingfen1,Arluison Véronique2

Affiliation:

1. Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06032, U.S.A.

2. Université Paris Diderot-Paris 7, Sorbonne Paris Cité & Laboratoire Léon Brillouin, Commissariat à l’Energie Atomique, CNRS-UMR 12, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France

Abstract

Bacterial RNA processing and degradation involves the co-ordinated action of a large number of RNases, RNA helicases and other proteins. It is not known how this functional network is organized within the cell nor how it is co-ordinated or regulated. In the present study, we show that multiple components of the RNA degradation and processing network of Escherichia coli are localized within extended cellular structures that appear to coil around the periphery of the cell. These include Orn, Hfq, PAP I, RNase III, RppH, RraA and RraB in addition to the previously reported proteins RNase II and RNaseE. Double-label localization studies of several of the proteins showed co-localization of the proteins within the observed structures. Assembly of the proteins into the structures was independent of the MreBCD or MinCDE cytoskeletal systems, RNA synthesis, or nucleoid positioning within the cell. Our results indicate that the components of the RNA processing and degradation network are compartmentalized within the cell rather than diffusely distributed in the cytoplasm. This sequestration provides the cell with a possible mechanism to control access to RNA substrates and to functionally co-ordinate the multiple players of the RNA processing and degradation pathways.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference63 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3