Exploitation of plant and archaeal viruses in bionanotechnology

Author:

Evans David J.1

Affiliation:

1. Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K.

Abstract

CPMV (cowpea mosaic virus), a plant virus, is a naturally occurring sphere-like nanoparticle, and is used as a synthon and/or template in bionanoscience. The virions formed by CPMV can be regarded as programmable nanobuilding blocks with a diameter of ∼30 nm. A range of molecules have been attached to this viral nanoscaffold, yielding stable nanoparticles that display multiple copies of the desired molecule. It has been shown that, in addition to surface amine groups, surface carboxy groups are also addressable, and a procedure has been developed that enables introduction of reactive thiols at the virion surface that avoids virus aggregation. Furthermore, the virions can be functionalized to form electroactive nanoparticles. Methods for the construction of arrays and multilayers, using a layer-by-layer approach, have been established. As proof of concept, for example, CPMV particles have been immobilized on surfaces and arranged in defined layers. Engineered variants of CPMV can be used as templates for mineralization with, for example, silica to give monodisperse robust silica nanoparticles of ∼32 nm. SIRV2 (Sulfolobus islandicus rod-shaped virus 2), is a robust archaeal virus, resistant to high temperature and low pH. SIRV2 can act as a template for site-selective and spatially controlled chemical modification. Both the ends and the body of the virus, or the ends only, can be chemically addressed; SIRV2 can be regarded as a structurally unique nanobuilding block.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Reference26 articles.

1. Utilisation of plant viruses in bionanotechnolgy;Steinmetz;Org. Biomol. Chem.,2007

2. The bionanoscience of plant viruses: templates and synthons for new materials;Evans;J. Mater. Chem.,2008

3. Viruses and Nanotechnology;Manchester,2008

4. Plant viruses as biotemplates for materials and their use in nanotechnology;Young;Annu. Rev. Phytopathol.,2008

5. Plant virology protocols: from virus isolation to transgenic resistance;Wellink;Methods Mol. Biol.,1998

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3