Affiliation:
1. Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, U.K.
Abstract
Morphinone reductase, produced by Pseudomonas putida M10, catalyses the NADH-dependent saturation of the carbon-carbon double bond of morphinone and codeinone, and is believed to be involved in the metabolism of morphine and codeine. The structural gene encoding morphinone reductase, designated morB, was cloned from Ps. putida M10 genomic DNA by the use of degenerate oligonucleotide probes based on elements of the amino acid sequence of the purified enzyme. Sequence analysis and structural characteristics indicated that morphinone reductase is related to the flavoprotein alpha/beta-barrel oxidoreductases, and is particularly similar to Old Yellow Enzyme of Saccharomyces spp. and the related oestrogen-binding protein of Candida albicans. Expressed sequence tags from several plant species show high homology to these enzymes, suggesting the presence of a family of enzymes conserved in plants and fungi. Although related bacterial proteins are known, morphinone reductase appears to be more similar to the eukaryotic proteins. Morphinone reductase was overexpressed in Escherichia coli, and has potential applications for the industrial preparation of semisynthetic opiates.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献