Perinatal iron restriction is associated with changes in neonatal cardiac function and structure in a sex-dependent manner

Author:

Noble Ronan M.N.12ORCID,Holody Claudia D.12,Woodman Andrew G.3,Nie Chunpeng12,Liu Si Ning12,Young Daniel4,Wiedemeyer Alyssa12,Soni Shubham12,Dyck Jason R.B.12,Graf Daniel5,Eckersley Luke G.12,Dufour Antoine4ORCID,Bourque Stephane L.123ORCID

Affiliation:

1. 1Department of Pediatrics, University of Alberta, Edmonton, Canada

2. 2Women and Children’s Health Research Institute, University of Alberta, Edmonton, Canada

3. 3Department of Anesthesiology, University of Alberta, Edmonton, Canada

4. 4Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada

5. 5School of Dentistry, University of Alberta, Edmonton, Canada

Abstract

Abstract Iron deficiency (ID) is common during gestation and in early infancy and can alter developmental trajectories with lasting consequences on cardiovascular health. While the effects of ID and anemia on the mature heart are well documented, comparatively little is known about their effects and mechanisms on offspring cardiac development and function in the neonatal period. Female Sprague-Dawley rats were fed an iron-restricted or iron-replete diet before and during pregnancy. Cardiac function was assessed in a cohort of offspring on postnatal days (PD) 4, 14, and 28 by echocardiography; a separate cohort was euthanized for tissue collection and hearts underwent quantitative shotgun proteomic analysis. ID reduced body weight and increased relative heart weights at all time points assessed, despite recovering from anemia by PD28. Echocardiographic studies revealed unique functional impairments in ID male and female offspring, characterized by greater systolic dysfunction in the former and greater diastolic dysfunction in the latter. Proteomic analysis revealed down-regulation of structural components by ID, as well as enriched cellular responses to stress; in general, these effects were more pronounced in males. ID causes functional changes in the neonatal heart, which may reflect an inadequate or maladaptive compensation to anemia. This identifies systolic and diastolic dysfunction as comorbidities to perinatal ID anemia which may have important implications for both the short- and long-term cardiac health of newborn babies. Furthermore, therapies which improve cardiac output may mitigate the effects of ID on organ development.

Funder

Gouvernement du Canada | Canadian Institutes of Health Research

Stollery Children's Hospital Foundation

Heart and Stroke Foundation of Canada

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3