Toxicity of myoglobin and haemoglobin: oxidative stress in patients with rhabdomyolysis and subarachnoid haemorrhage

Author:

Reeder B. J.1,Sharpe M. A.2,Kay A. D.3,Kerr M.4,Moore K.5,Wilson M. T.1

Affiliation:

1. Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K.

2. Department of Neurochemistry, Institute of Neurology, Queen Square, London WCIN 3BG, U.K.

3. Department of Neurosurgery, Institute of Neurological Science, Southern General Hospital, Glasgow G53 4TF, U.K.

4. Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, U.S.A.

5. Department of Medicine, Royal Free and University College Medical School, London NW3 2QG, U.K.

Abstract

Haemolytic events, such as those following rhabdomyolysis and subarachnoid haemorrhage, often result in pathological complications such as vasoconstriction. Haem-protein cross-linked myoglobin and haemoglobin are generated by ferric-ferryl redox cycling, and thus can be used as markers of oxidative stress. We have found haem-protein cross-linked myoglobin in the urine of patients suffering from rhabdomyolysis and haem-protein cross-linked haemoglobin in the cerebrospinal fluid of patients following subarachnoid haemorrhage. These findings provide strong evidence that these respiratory haem proteins can be involved in powerful oxidation processes in vivo. We have previously proposed that these oxidation processes in rhabdomyolysis include the formation of potent vasoconstrictor molecules, generated by the myoglobin-catalysed oxidation of membranes, inducing nephrotoxicity and renal failure. Haem-protein cross-linked haemoglobin in cerebrospinal fluid suggests that a similar mechanism of lipid oxidation is present and that this may provide a mechanistic basis for the delayed vasospasm that follows subarachnoid haemorrhage.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3